Arbachakov.ru

Спортивный обозреватель
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

В обмене аминокислот принимает участие витамин

Пиридоксин (витамин В6)

ВИТАМИН В6 (ПИРИДОКСИН)

ХИМИЧЕСКИЕ И ФИЗИЧЕСКИЕ СВОЙСТВА

Витамином В6 называют близкие по составу и свойствам вещества — пиридоксин, пиридоксаль и пиридоксамин. Для проявления витаминных свойств необходимо, чтобы эти вещества превратились в фосфорилированную форму (5-пиридоксал-фосфат). Такое превращение происходит в организме, после чего пиридоксин, пиридоксаль и пиридоксамин приобретают витаминные свойства.

Витамин В6 — это собирательное название производных 3-гидрокси-2-метилпиридинов, обладающих биологической активностью пиридоксина. Пиридоксин – одна из форм этого витамина.

Химическая формула пиридоксина — C H₁₁ N O


В результате работы ряда исследователей в разных странах в 1936 г. был выделен из дрожжей, а затем из рисовых отрубей витамин В6 и назван пиридоксином. Строение витамина В6 было установлено позднее и затем подтверждено его синтезом. Пиридоксин является 2-метил-3-гидрокси-4,5 (гидроксиметил)-пиридином.

Пиридоксин — белое кристаллическое вещество, хорошо растворимое в воде и спирте, устойчивое к кислотам и щелочам. При окислении 0,1% водного раствора пиридоксина равным объемом 0,1% КМn04 при 25° в течение 30 минут получается продукт неполного окисления пиридоксина — пиридоксаль, являющийся альдегидом пиридоксина. Пиридоксамин можно получить при нагревании пиридоксина с аммиаком или реакцией переаминирования пиридоксаля с аминокислотой. Так, пиридоксаль реагирует при нагревании с глютаминовой кислотой, образуя пиридоксамин и α-кетоглутаровую кислоту. Пиридоксин, пиридоксаль и пиридоксамин устойчивы к нагреванию до 100-121° в кислых и щелочных растворах, быстро разрушаются под влиянием солнечного и рассеянного дневного света.

Роль и значение витамина B6 (пиридоксина)

Витамин B6 (пиридоксин) используется прежде всего как стимулятор в обмене веществ. Он является коферментом белков, которые участвуют в переработке аминокислот и регулируют усвоение белка. Пиридоксин принимает участие в производстве кровяных телец и их красящего пигмента — гемоглобина и участвует в равномерном снабжении клеток глюкозой.

  • принимает участие в образовании эритроцитов;
  • участвует в процессах усвоения нервными клетками глюкозы;
  • необходим для белкового обмена и трансаминирования аминокислот;
  • принимает участие в обмене жиров;
  • оказывает гипохолестеринемический эффект;
  • оказывает липотропный эффект, достаточное количество пиридоксина необходимо для нормального функционирования печени.

Без витамина В6 невозможен не только нормальный белковый обмен, но также обмен жиров и углеводов. Равномерное снабжение глюкозой нервных клеток требует много пиридоксина, поэтому почти половина того пиридоксина, что есть в организме, используется им для выделения углеводов в кровь.

Витамин В6 препятствует резким нарушениям белкового, углеводного и жирового обмена, которые обычно имеют место при фосфорной интоксикации. Применение витамина В6 способствует сохранению гликогена в печени и мышцах, сохранению нуклеиновых кислот, меньшему накоплению жира и холестерина, поддержанию нормального содержания жидкости в органах. Витамин В6 также стимулирует желчеотделительную функцию печени.

Применение витамина В6 в комплексной терапии рахита оказало положительное действие на восстановление фосфорно-кальциевого обмена, на восстановление нарушенных обменных процессов в печени (белкового, аминокислотного, гликорегулирующей и антитоксической функций), на функциональное состояние центральной нервной системы, на динамику нарастания веса и др.

Полученные данные свидетельствуют о стимулирующем действии пиридоксина на функцию кровотворных органов. Пиридоксин также участвует в производстве эритроцитов и гемоглобина; поддерживает баланс калия и натрия во всех жидкостях в организме, что очень важно для нормальной работы нервной системы, памяти и работоспособности мозга. Витамин В6 участвует в синтезе нейромедиаторов, к которым относится и серотонин — вещество, снижающее чувствительность болевой системы организма, а также влияющее на настроение, аппетит и крепкий сон.

Благодаря витамину В6 укрепляется иммунитет, так как он способствует образованию антител, защищающих организм, и клеток, стимулирующих работу иммунной системы. Витамин В6 способствует развитию естественного иммунитета при некоторых патологических состояниях. Установлено в динамике, что витамин В6 оказывает нормализующее влияние на количественную сторону гемо- и лимфопоэза.

Витамин В6 стимулирует лейкопоэз при лейкопении на почве хронической интоксикации, вызываемой лекарственными препаратами (например, пирамидоном), рентгеновыми лучами, некоторыми промышленными токсическими веществами (например, бензолом). Прекращение указанных воздействий и применение витамина В6 приводят к увеличению содержания лейкоцитов в крови.

Людям, склонным к возникновению заболеваний сердца и сосудов, пиридоксин нужен в больших количествах: он не даёт крови сгущаться, предупреждает развитие атеросклероза, инфаркта и инсульта, нормализует артериальное давление. Нормальная работа печени также зависит от содержания в организме витамина В6.

Рентгеновское облучение может понижать активность многих ферментных систем, особенно при повторном и интенсивном облучении, для которых витамины группы В служат коферментами. В этом случае витамин В6 (так же, как и некоторые другие витамины этой группы) может способствовать восстановлению нарушенных ферментных систем.

В организме витамина В6 всегда должно быть много, так как он необходим всем клеткам и тканям, поэтому нужно восполнять его запасы постоянно – лучше всего с помощью продуктов питания, но можно принимать и специальные биологически активные добавки.

Об участии пиридоксина в обменных процессах

Существенное значение имеет витамин В6 в белковом обмене.

В организме пиридоксин фосфорилируется, превращается в фосфопиридоксаль и входит в состав ферментов, участвующих в обмене различных аминокислот и в ряде других процессов азотистого обмена. Фосфопиридоксаль участвует в построении молекулы большого числа ферментов: гистаминазы, глютаминазы, аминоферазы, декарбоксилазы, кинуреназы и др.

Витамин B6 принимает активное участие в обмене триптофана.

При недостатке в пище пиридоксина в моче появляются продукты неполного расщепления триптофана — кинуренин и ксантуреновая кислота. У здорового человека пиридоксин выделяется с мочой в виде основного продукта расщепления — 4-пиридоксиновой кислоты и в незначительном количестве в виде пиридоксина. Сущность расщепления заключается в том, что альдегидная группа пиридоксаля окисляется до кислоты и возникает пиридоксиновая кислота, которая уже не обладает биологическими свойствами витамина В6.

Витамин В6 участвует в процессах обмена метионина, цистина, глютаминовой кислоты и других аминокислот.

Пиридоксин оказывает большое влияние на обмен аминокислот, содержащих серу, принимает участие в пересульфировании, т. е. переноса сульфгидрильных групп с одного соединения на другое. Так, ферменты, в состав которых входит фосфопиридоксаль, способствуют переносу серы с метионина на серин и образованию цистеина.

Другим путем превращения аминокислот являются процессы, связанные с отщеплением карбоксильной группы и называемые декарбоксилированием. Реакция декарбоксилирования аминокислот протекает с выделением углекислоты и образованием аминов. Например, цистеиновая кислота, образующаяся в результате окисления цистеина при отщеплении углекислоты, превращается в таурин, а таурин играет важную роль в обмене жиров. Фосфопиридоксаль является коферментом декарбоксилаз большинства аминокислот.

Витамин В6 принимает участие в глютаминовом обмене

Читать еще:  Витамины омега 3 6

Глютамин, как известно, играет существенную роль в метаболических процессах головного мозга. Витамин В6 необходим для синтеза сложных белков-порфирииов, входящих в состав простетических групп гемоглобина, миоглобина, цитохромов, каталазы и пероксидазы. Витамин В6 повышает в мышцах содержание креатина, играющего важную роль в процессе сокращения мышцы.

При повышенном содержании в пищевом рационе белка увеличивается потребность и использование витамина В6, а при его недостатке могут развиваться явления В6-гиповитаминоза.

Пиридоксин участвует также в жировом обмене.

Окисление жиров, их синтез и другие процессы жирового обмена в значительной степени связаны с витамином В6. Он повышает усвоение организмом ненасыщенных жирных кислот и принимает участие в синтезе арахидоновой кислоты. Пиридоксин при участии метионина способствует метилированию никотинамида.

Нехватка витамина В6 (В6-АВИТАМИНОЗ)

Вытяните руку ладонью вверх, затем постарайтесь согнуть два концевых сустава на четырех пальцах (ладонь не следует сжимать в кулак) до тех пор, пока кончики пальцев не коснутся ладони. Если это удастся с трудом, то у вас недостаток В6.

Хронические интоксикации, туберкулёз (из-за того что при лечении используется изониазид — антагонист витамина В6), а также неправильное питание могут послужить причинами гиповитаминоза В6. Длительная форма болезни встречается редко и проявляется дерматитом и акродинией .

Нехватка витамина В6 может вызывать более ста различных заболеваний. Из-за его дефицита нарушается белковый обмен и, как следствие, возникают хронические заболевания.

Недостаток пиридоксина приводит к снижению количества Т-лимфоцитов (важного показателя работы иммунной системы), снижению аппетита, тошноте и рвоте (в особенности, у беременных), заторможенности, раздражительности, судорогам, депрессиям, повышению тревожности, психозам. Кроме того, к себорейному дерматиту, задержке роста у детей, метеоризму, появлению камней в почках, аномалиям энцефалограммы, анемии ( даже при полном обеспечении железом ), конвульсионным приступам (часто и у детей), глосситу, стоматиту, конъюктивитам, полиневритам нижних и верхних конечностей. Грудные дети при В6 недостаточности страдают поражениями нервной системы (чаще всего эпилептиформными припадками).

При B6-авитаминозе у человека отмечается мышечная слабость и затруднения при ходьбе, головокружение, иногда боль в животе, воспаление слизистой языка, поражение красной каймы губ. Если для своевременного снабжения нервных клеток глюкозой не хватает пиридоксина, то человек быстро устаёт, плохо спит и чувствует себя подавленным.

Существенное значение имеет вопрос о роли В6-витаминной недостаточности в развитии атеросклероза, что, по всей вероятности, связано с влиянием этого витамина на жировой обмен. Также, длительный недостаток витамина В6 в пище способствует развитию жировой инфильтрации печени.

Нехватка пиридоксина нарушает баланс натрия и калия в жидкости, и в организме начинает накапливаться вода. Так возникают отёки: на ногах, руках, лице, и даже большой живот может быть следствием нехватки витамина В6.

Содержание витамина B6 в продуктах

Пиридоксин содержится во многих продуктах, но его несколько больше в продуктах животного происхождения: яйцах, креветках, устрицах, лососевых, тунце, ветчине, курином мясе, говяжьем фарше и баранине, печени, твороге, сыре и других молочных продуктах.

Растительные продукты тоже бывают достаточно богаты пиридоксином: пророщенные зёрна, картофель, горох, капуста, морковь, помидоры, фасоль, чечевица, соя, листовые зелёные овощи, многие крупы и злаковые, дрожжи, орехи, семечки, ягоды и фрукты.

Кроме того, пиридоксин синтезируется нормальной микрофлорой здорового кишечника.

Витамин В6 и PP. Роль в обмене аминокислот, примеры реакций, строение.

1. Участвует в образовании НАД и НАДФ.

2. Компонент дыхательной цепи.

КОФЕРМЕНТ различных дегидрогеназ.

Суточная потребность в витамине РР 20 — 25мг.

Источниками витамина РР являются дрожжи, говяжья печень, рыба, грибы, мука пшеничная, соя, бобы, хлеб, картофель, мясо. Может синтезироваться в организме при поступлении с пищей белков и витамина В6.

Гиповитаминоз проявляется в виде пеллагры:

1.Дерматит с повреждением симметричных участков кожи, повреждённых УФО.

Причины гиповитаминоза: белковое голодание, недостаток витамина В6.

Участвует в образовании ПФ:

-Принимает участие в ДЕЗАМИНИРОВАНИИ.

-Необходим для образования витамина РР из триптофана.

-Сигма-АМИНОЛЕВУЛИНОВАЯ кислота ® гем.

Т.о. витамин В6 участвует в обмене аминокислот, следовательно, необходим для нормального обмена белков. Суточная потребность-2мг. Источники вит.В6: картофель, пшеница, рис, отруби, печень, дрожжи. Гиповитаминоз приводит к нарушению белкового обмена, что проявляется развитием анемии, дерматита, стоматита, глоссита.

Биотин, пантотеновая кислота, их роль в обмене веществ.

Биотин (Витамин Н антисеборейный). Метаболические функции витамина Н

1. Является КО-ферментом карбоксилаз ПВК, ацетил -КОА, пропионил-КОА.

ПВК + CО2 (вит.Н) ® ЩУК

2. Участвует в реакциях синтеза жирных кислот и стерина.

Суточная потребность в витамине Н 0,15 — 0,2мг. Источниками витамина Н являются: печень, соя, молоко, яйца, мука, лук, морковь, апельсины, дрожжи, арахис. Синтезируется микрофлорой кишечника. Гиповитаминоз проявляется в виде чешуйчатого дерматита (носогубной треугольник и волосистая часть головы), конъюктивита, анемии, себореи. Причины гиповитаминоза: дисбактериозы., заболевания ПЖЖ, в которой синтезируется фермент БИОТИНИДАЗА, освобождающий биотин от белка; если этого фермента нет, то БИОТИН не усваивается.

ПАНТОТЕИНОВАЯ КИСЛОТа (витамин ВЗ или В5).

Является производной бета -АЛАНИНА, соединенной с производным масляной кислоты. Метаболические функции ПАНТОТЕИНОВОЙ кислоты.

1. Входит в состав КО-фермента А, следовательно, участвует в синтезе АЦЕТИЛ-КОА,
различных АЦИЛ-КОА, образующихся в результате следующих реакций:

-ОКИСЛИТЕЛЬНОЕ ДЕКАРБОКСИЛИРОВАНИЕ альфа –КЕТОКИСЛОТ.

— Синтез и окисление жирных кислот, синтез СТЕРОИДОВ.

2. Участвует в синтезе более 80 различных ферментов.

Суточная потребность 10-15мг. Источники: печень, дрожжи, пчелиное молочко. Синтезируется микрофлорой кишечника. Гиповитаминоз характеризуется поражением -малых -артерий нижних конечностей.

53. Сигнальные молекулы и химические частицы, их классификация. Виды регуляторных эффектов сигнальных молекул. Факторы роста. Отличительные признаки гормонов. Классификация гормонов. Понятие о клетке мишени. Роль гипоталамуса в гормональной регуляции. Виды регуляции обмена веществ. Внешняя регуляция .

Сигнальные молекулы являются лигандами для рецепторов клеток-мишеней. Характерные особенности сигнальных молекул.

1.малый период жизни (динамичность, оперативность регуляции).

2.высокая биологическая активность (действие развивается при очень низких концентрациях).

3.уникальность, неповторимость действия.

4.наличие эффекта усиления (одна сигнальная молекула может усиливать каскады биохимических реакций).

5.один вид сигнальных молекул может иметь несколько клеток-мишеней.

6.реакция разных клеток-мишеней на одну и ту же сигнальную молекулу отличается.

Регуляция метаболизма: внутренняя и внешняя. Внутренняя регуляция — управляющие сигналы образуются и действуют внутри одной и той же клетки (само-регуляция). Внешняя регуляция — управляющие сигналы поступают к клетке из внешней среды. Внутренняя регуляция осуществляется путём изменения активности ферментов активаторами или ингибиторами. Внешняя регуляция обеспечивается специализированными сигнальными молекулами, которые в результате взаимодействия с ферментами обеспечивают внешнее управление биохимическими процессами в клетках-мишенях.

Читать еще:  Витамины в орехах грецких

Клетка-мишень — это клетка, имеющая специализированные воспринимающие рецепторы для данного вида сигнальных молекул.

Виды регуляторных эффектов сигнальных молекул:

1.Эндокринный. Сигнальные молекулы поступают с током крови из желудочно-воротной системы к клеткам-мишеням. 2.Паракринный — сигнальные молекулы вырабатывают в пределах одного органа или участка ткани.

3.Аутокринное — сигнальные молекулы действуют на клетку, их образовавшую.

КЛАССИФИКАЦИЯ СИГНАЛЬНЫХ МОЛЕКУЛ.

1)По химической природе:

  • 1.Органические (производные аминокислот, жиров). СТЕРОИДЫ, ПРОСТОГЛАНДИНЫ.
  • 2.Неорганические — 1992г. МОНООКСИДАЗОТА (NO).

2)По физико-химическим свойствам:

1.Липофобные — не могут проникать через мембрану клетки. Они растворимы в воде.

2.Липофильные — растворяются в жирах. Свободно проникают через ЦПМ и действуют на рецепторы внутри клетки.

3)По биологическому принципу:

1.Гормоны — сигнальные молекулы с выраженным эндокринным эффектом.

2.Цитокины — факторы роста. Это сигнальные молекулы белковой природы, которые выделяются неспециализированными клетками организма. Они регулируют рост, дифференцировку, пролиферацию соседних клеток. Действие пара- и аутокринно.

3.Нейромедиаторы сигнальные молекулы, вырабатывающиеся нервными клетками, координирующие работу нейронов и управление периферическими тканями. Их действие связано с влиянием на ионные каналы. Они изменяют их проницаемость и вызывают деполяризацию мембраны. ГИПОТАЛАМУС является компонентом и своеобразным «выходным каналом» лимбической системы. Это отдел промежуточного мозга, контролирующий различные параметры гомеостаза. С одной стороны он связан с ЦНС (центры ВНС), с другой — с гипофизом через нервные проводники и особую портальную систему.

ГИПОТАЛАМУС участвует во многих функциях нервной регуляции, выделяя НЕЙРОТРАНСМИТТЕРЫ и. а также регулирует эндокринную систему.

Вторые посредники в действии липофобных сигнальных молекул, цАМФ и цГМФ -зависимые механизмы действия. Аденилатциклаза, протеинкиназа. Продемонстрировать эффекты гормонов, осуществляющие регуляторное действие при участии цАМФ.

МЕХАНИЗМ ДЕЙСТВИЯ, ЗАВИСИМЫЙ ОТ ЦАМФ.

Факторы, необходимые для этого:

o растворимая в воде сигнальная молекула;

o поверхностные рецепторы клетки-мишени;

o внутриклеточный трансдуктор G-белок. Состоит из 3 единиц: альфа, бета, гамма.

· G-белок может быть ингибирующий и активирующий. G-белок способен присоединять ГДФ или ГТФ.

o АДЕНИЛАТЦИКЛАЗА(АЦ) (превращает АТФ в ЦАМФ);

· ПРОТЕИНКИНАЗА-А ЦАМФ-зависимая. Она катализирует реакцию фосфорилирования белков;

o Регуляторные элементы ДНК (ЭЕХАНСЕР и САЙЛЕНСЕР);

o ФОСФОДИЭСТЕРАЗА — разрушает ЦАМФ;

o ФОСФАТАЗА — дефосфорилируют белки;

o Белок-синтетический аппарат клетки.

Этапы, стимулирующие ЦАМФ -зависимый механизм:

1. взаимодействие сигнальной молекулы с рецептором;

2. изменение конформации G-белка;

3. замена ГДФ на ГТФ в альфа-S единице G-белка;

4. альфа-S ГТФ активирует АЦ;

5. АЦ синтезирует ЦАМФ;

6. ЦАМФ активирует ПРОТЕИНКИНАЗУ-А (ПКА);

7. ПКА фосфорилирует белки и белковые факторы транскрипции, изменяющие активность и количество ферментов;

8. Прекращение действия.

— ФОСФОДИЭСТЕРАЗА — разрушает ЦАМФ.

— ФОСФАТАЗА — ДЕФОСФОРИЛИРУЕТ белки.

Этапы, ингибирующие ЦАМФ -зависимый механизм:

С первого по третий те же самые этапы, отличие в G-белке (альфа-I единица). Четвёртый этап — связывание ГТФ с альфа-I единицей будет ингибировать АЦ. Ингибируюший механизм противодействует и прекращает эффекты ЦАМФ в клетке. ЦГМФ -зависимый стимулирующий механизм действия.

Рецептор встроен в мембрану клетки и связан с ферментом ГУАНИЛАТЦИКЛАЗОЙ (ГЦ). При присоединении сигнальной молекулы ГЦ активируется и катализирует реакцию ГТФ * ЦГМФ. Последний активирует ПРОТЕИНКИНАЗУ-G (ПКО), а она запускает реакцию фосфорилирования белков (ферментов и факторов транскрипции).

Альдостерон — регуляция объема внутриклеточной жидкости, повышение реабсорбции воды и натрия. Тироксин – повышение основного обмена

Механизм действия липофильных сигнальных молекул. Механизм действия NО. Действие сигнальных молекул через тирозинкиназные рецепторы. Принципы иммунноферментного анализа уровня сигнальных молекул.

1.взаимодействие с внутриклеточными рецепторами,

2.регуляторный эффект связан с изменением количества белков в результате влияния на экспрессию генов

3. биологическое действие продолжительное, но развивается медленно в пределах часов.
Факторы, необходимые для их действия:

— воспринимающий внутриклеточный рецептор, связанный с шапероном.

— участок ДНК, регулирующий транскрипцию определённых генов (ЭНХАНСЕР, САЙЛЕНСЕР),

— белок синтетический аппарат клетки.
Этапы действия:

1. проникновение внутрь клетки,

2. связывание с внутриклеточным рецептором,

3. освобождение шаперона (запуск таймера действия),

4. взаимодействие комплекса сигнальных молекул с регуляторными элементами ДНК, изменение биосинтеза некоторых белков, в том числе и их ферментов.

5. изменение метаболизма и клеточных функций.

Механизм прекращения действия органических липофильных сигнальных молекул:

o разрушение рецепторов, обусловленное отсутствие защиты со стороны шаперона,

o протеолиз синтезированных белков,

o разрушение факторов транскрипции, участвующих в передаче сигналов к структурному гену.

По перечисленному механизму действуют СТЕРОИДНЫЕ гормоны и ЙОДТИРОНИН.

ТИРОЗИНКИНАЗА — фермент, фосфорилирующий белки. По этому механизму действует большинство факторов роста и пролиферации. Наблюдается отсутствие МЕССЕНДЖЕРОВ. Рецептор оказывает влияние на ферментные системы клетки. Он может поступать в ядро вместе с сигнальными молекулами и усиливать транскрипцию генов и изменять митотическую активность клетки.

Механизм действия НЕОРГАНИЧЕСКИХ ЛИПОФОБНЫХ сигнальных молекул (NO). NO беспрепятственно проникает через мембрану клетки. Образуется из аргинина. В клетке NO взаимодействует с ГЦ, активирует её, что вызывает накопление в клетке ЦГМФ. который активирует ПКО, и развивается клеточный ответ по выше рассмотренному механизму.

1. фактор расширения сосудов;

2. регулятор АПОПТОЗА (запрограммированной клеточной смерти);

3.NO является свободным радикалом, поэтому способен влиять на ПОЛ и регулировать функции МИТОХОНДРИЙ;

4. является ИММУНОМОДУЛЯТОРОМ.

Дата добавления: 2019-07-15 ; просмотров: 131 ;

78. Витамин в6 и pp. Роль в обмене аминокислот, примеры реакций, строение.

1. Участвует в образовании НАД и НАДФ.

2. Компонент дыхательной цепи.

КОФЕРМЕНТ различных дегидрогеназ.

Суточная потребность в витамине РР 20 — 25мг.

Источниками витамина РР являются дрожжи, говяжья печень, рыба, грибы, мука пшеничная, соя, бобы, хлеб, картофель, мясо. Может синтезироваться в организме при поступлении с пищей белков и витамина В6.

Гиповитаминоз проявляется в виде пеллагры:

1.Дерматит с повреждением симметричных участков кожи, повреждённых УФО.

Причины гиповитаминоза: белковое голодание, недостаток витамина В6.

Участвует в образовании ПФ:

-Принимает участие в ДЕЗАМИНИРОВАНИИ.

-Необходим для образования витамина РР из триптофана.

-Сигма-АМИНОЛЕВУЛИНОВАЯ кислота ® гем.

Т.о. витамин В6 участвует в обмене аминокислот, следовательно, необходим для нормального обмена белков. Суточная потребность-2мг. Источники вит.В6: картофель, пшеница, рис, отруби, печень, дрожжи. Гиповитаминоз приводит к нарушению белкового обмена, что проявляется развитием анемии, дерматита, стоматита, глоссита.

79. Характеристика витамина с, строение. Участие в обмене веществ, проявление гиповитаминоза. Витамин р.

Витамин С (аскорбиновая к-та, антискорбутный). Витамин С легко окисляется в нейтральной и щелочной среде в присутствии кислорода. Метаболические функции витамина С.

1. Участие в окислительно-восстановительных реакциях:

антиоксидант, гидроксилирование катехоламинов,-ДОФА  НОРАДРЕНАЛИН

Читать еще:  Витамины для обмена веществ в организме

-гидроксилирование аминокислот, входящих в состав коллагена-ПРОЛИН  ОКСИПРОЛИН

2. Синтез кортикостероидов. Суточная потребность в витамине С — 100 — 120мг.

L-аскорбин.кислота. L-дегидроаскорбиновая кислота

Источниками витамина С являются: лимон, грецкие орехи, смородина, шиповник, яблоки, красный перец, картофель, зелёный лук. укроп, квашеная капуста. Дефицит вит.С приводит к активации свободно радикальных процессов (стресс, ОРВИ). Гиповитаминоз проявляется в виде нарушения синтеза коллагена: увеличивается проницаемость сосудов, следовательно, кровоточивость десен, патехии на коже, кариес.

-неустойчивость химической структуры,

Витамин Р (витамин проницаемости, РУТИН, КАТЕХИНЫ, ПОЛИФЕНОЛЫ).

Обладает антиоксидантной активностью, участвует в окислительно-восстановительных реакциях.

Тормозит активность гиалуронидазы — фермента, разрушающего гиалуроновую кислоту (компонент соединительной ткани). Суточная потребность не установлена. Источниками витамина Р являются апельсины, лимон, шиповник, смородина, грецкий орех, салат, томат, капуста, картофель, чай, сухое красное вино. Гиповитаминоз проявляется аналогично гиповитаминозу С.

80. Витамин в12 и фолиевая кислота. Их химическая природа, участие в метаболических процессах. Причины гиповитаминозов.

Витамин В12 (кобаломин, антианемический).

По структуре геминоподобное соединение. Устойчив при нагревании, синтезируется микроорганизмами.

Метаболические функции витамина В12.

В процессе метаболизма из КОБАЛОМИНА образуются МЕТИЛКОБАЛОМИН и АДЕНОЗИНКОБАЛОМИН. МЕТИЛКОБАЛОМИН участвует в транспорте метильных групп

I. МЕТИЛИРОВАНИЕ В12: ГОМОЦИСТЕИН ® МЕТИОНИН ® ХОЛИН ® ФОСФАТИДИЛХОЛИН

2.ДЕМЕТЕЛИРОВАНИЕ В12 МЕТИЛТЕТРОГИДРОФОЛЕВАЯ К-ТА ® ТЕТРОГИДРОФОЛЕВАЯ К-ТА

II. АДЕНОЗИЛКОБАЛАМИН В12

Суточная потребность в витамине 1,5-Змкг. В клинике используют до 200мкг. В этом случае он усваивается без внутреннего фактора КАСТЛА. Источниками витамина В12 являются печень говяжья и трески, мясо, сыр, яйцо, молоко коровье, козье. Витамин В12 синтезируется микрофлорой кишечника. Он депонируется в печени. Его запасов хватает на 2 — 3 месяца. Гиповитаминоз В12:

1. Клетки теряют фолиевую кислоту, а её дефицит проявляется в виде мегалобластической анемии.

2. Поражение слизистой ЖКТ.

3. Накопление МЕТИЛМАЛОНИЛ-КОА.

4. Нарушение синтеза ХОЛИНА и ФОСФОЛИПИДОВ.

5. Повышение ГОМОЦИСТЕИНА в крови приводит к развитию атеросклероза.

1. Для всасывания В12 необходим фактор КАСЛА, который синтезируется обкладочными клетками слизистой желудка.

2. Недостаточность или нарушение рецепторов.

3. Дефицит мукопротеина (иммунные расстройства, заболевания слизистой желудка).

4. Дефицит витамина В12 (длительное вегетарианство, энтериты, дсбактериозы).

Вегетарианство (?)

Король обмена аминокислот — витамин B6

У здоровых людей явлений гиповитаминоза B6 (пиридоксина) не отмечается, так как этого витамина достаточно много в различных продуктах питания и он устойчив при приготовлении пищи и её хранении. Пиридоксин содержится в горохе, фасоли, зерновых культурах, в мясе, рыбе и пр. Он синтезируется также кишечными микроорганизмами. Суточная потребность в нём — около 2 мг.

Недостаточность витамина B6 (пиридоксина) иногда отмечается у детей при искусственном вскармливании и у взрослых при лечении противотуберкулёзным препаратом изониазидом. Она проявляется повышенной возбудимостью нервной системы, невритами, наклонностью к судорогам. Эти симптомы связаны с нарушением образования тормозных передатчиков нервных клеток мозга. Кроме того, при гиповитаминозе B6 поражается кожа — она становится отёчной, шелушится.

В организме онкологического больного содержание пиридоксина, и особенно его активных форм, может быть снижено. Это наблюдается при рецидивировании (появлении вновь после проведенного лечения) или метастазировании рака молочной железы, толстой кишки, шейки и тела матки; наиболее часто пиридоксиновый гиповитаминоз отмечается при раке мочевого пузыря (Н. А. Квирикадзе, 1971) и при острых лейкозах у детей (М. Б. Чувыкин, 1989; R. Pais, 1989). B6-недостаточность усиливается у больных, получающих противоопухолевые препараты, например адриамицин (P. C. Richardson, 1980).

Участие этого витамина в обмене веществ чрезвычайно многообразно. Его активные формы входят в состав почти всех классов ферментов. Особенно велика роль витамина B6 в многочисленных реакциях обмена аминокислот («король аминокислотного обмена»), образовании биологически активных молекул и сложных липидов, в синтезе гема (составной части гемоглобина и ферментов тканевого дыхания), в регуляции функции нервной системы и иммунитета (Е. А. Строев, 1986). Активные формы пиридоксина оболадают высоким антиоксидантным действием, предупреждая накопление в тканях радиотоксинов (Ж. С. Геворкян, 1989).

Участие витамина B6 в синтезе нуклеиновых кислот и обмене аминокислот делает его остро необходимым для жизнедеятельности как нормальных, так и раковых клеток. Опухоль не только активно поглощает этот витамин, но и интенсивно его использует (А. В. Петрух, 1985). По некоторым данным дефицит витамина B6 вызывает уменьшение скорости роста опухолей у животных и человека (O. J. Stone, 1989), а антивитамины (антагонисты) пиридоксина обладают противолейкозным эффектом (Ю. В. Букин, 1988).

Однако имеются сведения и о положительном влиянии витамина на организм опухоленосителя. Гродненские учёные Р. В. Требухина и Г. Н. Михальцевич (1982) установили, что после введения пиридоксина в физиологических концентрациях рост перевиваемых опухолей у животных не ускоряется; после 10-кратного увеличения вводимой дозы он даже тормозится, а выживаемость опухолевых животных увеличивается. Прямой противораковый эффект больших доз пиридоксина обнаружен при добавлении его в среду культивирования злокачественных клеток меланомы; это наблюдение легло в основу создания пиридоксинового крема, который наносится на кожу при кожной и подкожной злокачественной меланоме, препятствуя при этом прогрессированию роста опухоли (см. М. Б. Чувыкин, 1989).

Обнаружена способность витамина B6 участвовать в обезвреживании канцерогенных продуктов обмена аминокислоты триптофана. Этим продуктам приписывается решающая роль в увеличении степени риска рецидивирования рака мочевого пузыря. Введение витамина B6 может предупредить появление рецидива рака.

Назначение пиридоксина детям, больным острым лейкозом (при этой большой группе злокачественных заболеваний крови также появляются ненормальные продукты распада триптофана) часто оказывается бесполезным, так как витамин плохо усваивается организмом и в неизменённом виде выводится с мочой. Картина изменяется в благоприятную сторону, если витамин B6 назначать вместе с антиоксидантным комплексом витаминов «АК» (М. Б. Чувыкин, 1989).

Таким образом, предстоят ещё немалые усилия учёных, чтобы решить вопрос, как и в каких случаях назначать витамин B6 онкологическому больному. Несмотря на то, что опухоль сильно нуждается в этом витамине, он необходим и нормальным тканям организма. В конкурентных взаимоотношениях с организмом за жизненно важные вещества почти всегда побеждает опухоль. И лишение нормальных клеток необходимых для её жизнедеятельности витаминов только отягчает сложившуюся ситуацию. В частности, при недостатке витамина B6 ухудшается состояние больных запущенными формами рака (C. Potera, 1976).

Сам факт гиповитаминозного состояния при росте злокачественных новообразований свидетельствует о необходимости приёма этого витамина. Без сомнения, пиридоксин играет важную роль в профилактике рака мочевого пузыря и предупреждении его рецидива у больного, прошедшего курс лечения по поводу этого заболевания.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector