Arbachakov.ru

Спортивный обозреватель
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Классификация мышечных волокон таблица

Классификация мышечных волокон таблица

Всем известно, что каждый человек имеет индивидуальную мышечную композицию, то есть только ему присущее сочетание мышечных клеток (волокон) разных типов во всех скелетных мышцах. Вот только классификаций этих типов волокон несколько и они не всегда совпадают. Какие же классификации сейчас приняты?
Мышечные волокна делятся:

1. На белые и красные

2. На быстрые и медленные

3. На гликолитические, промежуточные и окислительные

4. На высокопороговые и низкопороговые

Разберем все подробно.

Белые и красные. На поперечном сечении мышечное волокно может иметь различный цвет. Он зависит от количества мышечного пигмента миоглобина в саркоплазме мышечного волокна. Если содержание миоглобина в мышечном волокне большое, то волокно имеет красно-бурый цвет. Если миоглобина мало, то бледно-розовый. У человека почти в каждой мышце содержатся белые и красные волокна, а так же волокна слабо пигментированные. Миоглобин используется для транспортировки кислорода внутри волокна от поверхности к митохондриям, соответственно его количество определяется количеством митохондрий. Увеличивая количество митохондрий в клетке специальными тренировками, мы увеличиваем количество миоглобина и изменяем цвет волокна.

Быстрые и медленные. Классифицируются по активности фермента АТФ-азы и, соответственно, по скорости сокращения мышц. Активность данного фермента наследуется и тренировке не поддается. Каждое волокно имеет свою неизменную активность этого фермента. Освобождение энергии заключенной в АТФ, осуществляется благодаря АТФ-аза. Энергии одной молекулы АТФ достаточно для одного поворота (гребка) миозиновых мостиков. Мостики расцепляются с актиновым филаментом, возвращаются в исходное положение, сцепляются с новым участком актина и делают гребок. Скорость одиночного гребка одинакова у всех мышц. Энергия АТФ в основном требуется для разъединения. Для очередного гребка требуется новая молекула АТФ. В волокнах с высокой АТФ-азной активностью расщепление АТФ происходит быстрее, и за единицу времени происходит большее количество гребков мостиками, то есть мышца сокращается быстрее.

Гликолитические, промежуточные и окислительные. Классифицируются по окислительному потенциалу мышцы, то есть по количеству митохондрий в мышечном волокне. Напомню, что митохондрии – это клеточные органеллы, в которых глюкоза или жир расщепляется до углекислого газа и воды, ресинтезируя АТФ, необходимую для ресинтеза креатинфосфата. Креатинфосфат используется для ресинтеза миофибриллярных молекул АТФ, которые необходимы для мышечного сокращения. Вне митохондрий в мышцах также может происходить расщепление глюкозы до пирувата с ресинтезом АТФ, но при этом образуется молочная кислота, которая закисляет мышцу и вызывает ее утомление.

По этому признаку мышечные волокна подразделяются на 3 группы:

1. Окислительные мышечные волокна. В них масса митохондрий так велика, что существенной прибавки ее в ходе тренировочного процесса уже не происходит.

2. Промежуточные мышечные волокна. В них масса митохондрий значительно снижена, и в мышце в процессе работы накапливается молочная кислота, однако достаточно медленно, и утомляются они гораздо медленнее, чем гликолитические.

3. Гликолитические мышечные волокна. В них очень незначительное количество митохондрий. Поэтому в них преобладает анаэробный гликолиз с накоплением молочной кислоты, отчего они и получили свое название. (Анаэробный гликолиз – расщепление глюкозы без кислорода до молочной кислоты и АТФ; аэробный гликолиз, или окисление – расщепление глюкозы в митохондриях с участием кислорода до углекислого газа, воды и АТФ.)

У не тренирующихся людей обычно быстрые волокна – гликолитические и промежуточные, а медленные – окислительные. Однако при правильных тренировках на увеличение выносливости промежуточные и часть гликолитических волокон можно сделать окислительными, и тогда они, не теряя в силе, перестанут утомляться.

Высокопороговые и низкопороговые. Классифицируются по уровню порога возбудимости двигательных единиц. Мышца сокращается под действием нервного импульса, который имеет электрическую природу. Каждая двигательная единица (ДЕ) включает в себя мотонейрон, аксон и совокупность мышечных волокон. Количество ДЕ у человека остается неизменным на протяжении всей жизни. Двигательные единицы имеют свой порог возбудимости. Если нервный импульс, посылаемый мозгом, имеет величину ниже этого порога, ДЕ пассивна. Если нервный импульс имеет пороговую для этой ДЕ величину или превышает ее, мышечные волокна сокращаются. Низкопороговые ДЕ имеют маленькие мотонейроны, тонкий аксон и сотни иннервируемых медленных мышечных волокон. Высокопороговые ДЕ имеют крупные мотонейроны, толстый аксон и тысячи иннервируемых быстрых мышечных волокон.

Как видите, две из представленных классификаций неизменны на протяжении всей жизни человека вне зависимости от тренировок, а две напрямую зависят именно от тренировок. В отсутствии двигательного режима, например в коме, или долгом нахождении в гипсе даже медленные мышечные волокна теряют свои митохондрии и соответственно миоглобин и становятся белыми и гликолитическими.

Поэтому в настоящее в спортивной науке считается неправильно говорить: «тренировки направленные на гипертрофию быстрых мышечных волокон», или «гиперплазия миофибрилл в медленных мышечных волокнах», хотя еще 10 лет назад это считалось допустимо даже в специализированных научных изданиях. Сейчас если мы говорим о тренировочном воздействии на МВ, то используем только классификацию по окислительному потенциалу мышцы. Классификации совпадают у не тренирующихся и у представителей скоростно-силовых и силовых видов спорта, где цель поднять максимальный вес в единичном повторении. В видах спорта требующих проявления выносливости классификации совпадать не будут.

Для наглядности приведу несколько утрированный, хотя теоритически вполне возможный пример. Сразу оговорюсь, что все цифры условные, и их не надо воспринимать буквально. Представим атлета, у которого лучший результат в жиме лежа 200 кг (без экипировки), 180 кг он может пожать на 3 раза, 150 кг на 10 раз. Из результатов видно, что окислительный потенциал мышц очень низок. Соотношение волокон, предположим, следующее: 90% быстрые, 10% медленные. По окислительному потенциалу 75% гликолитические, 15% промежуточные и 10% окислительные. Наилучших успехов в увеличении мышечной массы спортсмен добивается, когда работает в жиме по 6 повторений. Вес штанги достаточно большой чтобы рекрутировать 75% гликолитических волокон, а окислительный потенциал их настолько низок, что и 6-и повторений достаточно для необходимого закисления мышцы.

Но вот по какой-то причине этот атлет решил максимально увеличить свою выносливость и два месяца по 2-3 раза в день ежедневно работал над увеличением митохондрий в гликолитических и промежуточных МВ. Подробно об этой методике вы можете прочитать в 5-м номере «ЖМ», в моей статье «Тренировка выносливости». Плюс к этому атлет еще поддерживал свой силовой потенциал, выполняя по 1-2 повторениям с околомаксимальным весом раз в 7-10 дней. Два месяца достаточно для предельного насыщения мышц митохондриями. Через два месяца спортсмен проводит тестирование. Оно показывает, что сейчас у него 5% гликолитических волокон, 70% промежуточных и 25% окислительных. То есть гликолитические стали промежуточными, кроме 5% самых высокопороговых, а промежуточные стали окислительными. По активности АТФ-азы соотношение естественно не изменилось, так же 90% быстрые и 10% медленные. 200 кг он выжал на 1 раз, миофибриллы от таких тренировок не выросли, а упасть результату он не дал, используя в тренировках ММУ. 180 кг он выжал на 8 раз, а 150 кг на 25 раз. Огромное количество новых митохондрий «съедало» молочную кислоту не давая мышцам закислиться, что значительно увеличило их функциональность.
Теперь нашему атлету для увеличения мышечной массы работа на 6 повторений практически ничего не даст. Она задействует в нужном режиме только 5% оставшихся гликолитических волокон.

Читать еще:  Сколько калорий в спортзале

Сейчас ему придется работать минимум по 15 повторений в подходе, чтобы добиться необходимого для роста мышечной массы закисления мышц. И, дополнительно, включить в тренировку стато-динамические упражнения, поскольку только они способствуют гипертрофии окислительных мышечных волокон, которых у него теперь 25%, и игнорировать их уже нецелесообразно.

Как мы видим, один и тот же человек вынужден использовать абсолютно разные тренировочные программы для гипертрофии своих быстрых мышечных волокон после изменения их окислительного потенциала! Вот поэтому говорить о тренировочном воздействии на типы волокон, используя классификацию по активности АТФ-зы, считается некорректным. Только классификация по окислительным способностям мышц!

Продукты компании не являются лекарственными средствами. Перед употреблением проконсультируйтесь с врачом.

Типы мышечных волокон

Описаны различные типы мышечных волокон, а также гистологические и гистохимические методы их классификации. Дана характеристика различных типов мышечных волокон, описаны их функции, а также расположение в скелетной мышце.

Типы мышечных волокон

Классификации мышечных волокон

В настоящее время общепринято считать, что у человека скелетные мышцы состоят из волокон различных типов. Существуют различные классификации типов мышечных волокон. Различают волокна: красные и белые, медленные и быстрые, тонические и фазические. В середине ХХ века для разделения мышечных волокон на разные типы использовались гистологические методы (А.В. Самсонова с соавт., 2012). Из скелетных мышц посредством биопсии извлекался кусочек мышечной ткани, быстро замораживался и разрезался на тонкие слои. Затем производилось исследование мышечной ткани под микроскопом. Первоначально критерием разделения мышечных волокон на медленные и быстрые являлось количество и расположение митохондрий. Затем предпочтение стали отдавать такому показателю как толщина Z-дисков. Было найдено, что у медленных волокон Z-диски существенно толще, чем у быстрых. В качестве еще одного критерия разделения мышечных волокон на типы использовалась толщина М-диска. При продольных срезах расслабленной скелетной мышцы видно, что медленные мышечные волокна содержат пять М-линий, имеющих одинаковую плотность. Промежуточные мышечные волокна – три линии средней плотности, ясно видимые и две линии, имеющие небольшую плотность. В быстрых мышечных волокнах имеются три линии средней плотности и две внешние, едва различимые.

В настоящее время чаще всего используется классификация M.Brook, K.Kaiser (1970), которая основывается на гистохимических методах.

Более подробно строение и функции мышц описаны в моих книгах «Гипертрофия скелетных мышц человека» и «Биомеханика мышц«

Известно, что миофибриллы состоят из саркомеров, а те, в свою очередь – из толстых и тонких филаментов. Основу толстых филаментов составляет белок миозин, а основу тонких – белок актин.

Гистохимические методы основаны на определении активности фермента АТФ-азы миозина. Этот фермент расположен на головках молекул миозина. Фермент АТФ-аза осуществляет высвобождение энергии, необходимой для осуществления сокращения мышечного волокна. Степень активности АТФ-азы варьирует в широких пределах. Установлено, что степень активности АТФ-азы миозина связана с типом миозина, содержащемся в мышечном волокне. В медленных мышечных волокнах активность АТФ-азы низкая, а в быстрых – высокая. Именно высокая активность АТФ-азы миозина способствует высокой скорости сокращения мышечных волокон.

На основе классификации по активности АТФ-азы миозина различают мышечные волокна типа I, типа IIA и типа IIB.

Характеристики мышечных волокон

Медленные и быстрые мышечные волокна различаются метаболизмом, что проявляется в активности ферментов и количестве митохондрий. Медленные мышечные волокна окружены большим числом крупных митохондрий с набором ферментов, катализирующих распад углеводов и жирных кислот. Поскольку этот процесс требует притока большого количества кислорода, вполне естественно, что сеть капилляров, окружающая медленные мышечные волокна более развита и снабжение кислородом, доставленным с током крови, в этих волокнах происходит более интенсивно. В этих волокнах крайне ограничен запас углеводов в виде гликогена и низка активность ферментов гликолиза (М.И. Калинский, В.А. Рогозкин, 1989).

Быстрые волокна типа IIA и IIB характеризуются высокой активностью АТФ-азы миозина, поэтому скорость их сокращения практически в два раза выше, чем у медленных. С высокой скоростью сокращения связан хорошо развитый саркоплазматический ретикулум, который характерен для быстрых мышечных волокон, так как он содержит ионы кальция, необходимые для сокращения мышечного волокна.

Волокна типа IIA имеют набор ферментов для полного окисления углеводов и жирных кислот, такой же, как и в медленных волокнах и к тому же они располагают ферментами гликолиза, то есть способностью расщеплять углеводы до молочной кислоты. Быстрые мышечные волокна типа IIB способны к коротким периодам сократительной активности. Они имеют набор ферментов гликолиза с высокой активностью и небольшое количество митохондрий с окислительными ферментами. Быстрые мышечные волокна типа IIA и IIB имеют большие запасы гликогена, который сразу используется в качестве источника энергии при сокращении скелетной мышцы (табл.1).

Таблица 1 Характеристики мышечных волокон различных типов

ХарактеристикаI типIIА типIIВ тип
Название мышечных волоконКрасные, медленные, устойчивые к утомлению, окислительныеПромежуточные, быстрые, устойчивые к утомлению, окислительно-гликолитическиеБелые, быстрые, быстроутомляемые, гликолитические, анаэробные
Размер мотонейронамалыйБольшойБольшой
Активность АТФ-азы миозинанизкаяВысокаяВысокая
Саркоплазматический ретикулумСлабо развитСреднее развитиеХорошо развит
Плотность

капилляров

ВысокаяВысокаяНизкая
Количество миоглобинаМногоСреднеМало
Количество митохондрийМногоСреднеМало
Размеры митохондрийОчень большиеСредниеНебольшие
Активность ферментов митохондрийБольшаяБольшаяНизкая
Сопротивление утомлениюВысокоеСреднееОчень низкое
Запасы гликогенаНизкиеБольшиеБольшие
Гликолитическая способностьНизкаяБольшаяБольшая
Скорость

сокращения

НизкаяВысокаяВысокая
Площадь поперечного сечения мышечного волокнаНебольшаяБольшаяБольшая
Максимальная

сила

НебольшаяБольшаяОчень большая

Функции мышечных волокон

Основная функция волокон типа I – выполнение длительной работы низкой интенсивности. Они активны также при поддержании позы. Поэтому антигравитационные мышцы в основном состоят из медленных волокон типа I.

Основная функция мышечных волокон типа II – выполнение быстрых и сильных сокращений.

Мышечные волокна объединены в пучки. Их покрывает перимизий. Пучок содержит мышечные волокна различных типов. В пучке мышечные волокна расположены в виде мозаики. Однако доказано, что внутри мышцы больше мышечных волокон типа I, а снаружи – мышечных волокон типа II.

29. Классификация мышц

Единой классификации мышц нет. Мышцы подразделяют по величине и форме, функциям, положению в теле человека, функциональному признаку, направлению мышечных волокон.

По функциональному признаку все мышцы подразделяются на две группы: произвольные и непроизвольные мышцы.

Произвольные мышцы состоят из поперечнополосатой мышечной ткани и сокращаются по воле человека (произвольно). В эту группу входят все мышцы головы, туловища и конечностей, т. е. скелетные мышцы, а также мышцы некоторых внутренних органов (языка, гортани и др.).

Непроизвольные мышцы состоят из гладкой мышечной ткани и находятся в стенках внутренних органов и кровеносных сосудов, а также в коже. Сокращения этих мышц не зависят от воли человека (происходят непроизвольно).

Следует иметь в виду, что сердечная мышца хотя и сокращается непроизвольно, но состоит из поперечнополосатой мышечной ткани особого строения.

В зависимости от величины и формы различают длинные, широкие, короткие и круговые мышцы. Длинные мышцы встречаются там, где размах движения велик, например на конечностях. Короткие мышцы залегают там, где размах движения мал, например, между отдельными позвонками. Широкие мышцы располагаются преимущественно на туловище, в стенках полостей тела, например мышцы живота, поверхностные мышцы спины и груди. При многослойном расположении широких мышц их волокна обычно идут в разных направлениях и мышцы не только обеспечивают большое разнообразие движений, но и способствуют укреплению стенок полостей тела. Круговые мышцы располагаются вокруг отверстий тела (например, круговая мышца рта) и своим сокращением суживают их, почему и называются ещё сфинктерами.

Начало мышцы может быть не одиночным, а разделённым на две, три, четыре части — головки. Начинаясь от разных костных точек, головки затем сливаются в общее брюшко. Соответственно своему строению подобные мышцы называются двуглавыми, трехглавыми и четырехглавыми. Разделенным может быть и тот конец мышцы, который называется прикреплением. Тогда общее брюшко, делясь, оканчивается несколькими сухожилиями, которые прикрепляются к различным костям. Такие мышцы, например, приводят в движение пальцы (длинный разгибатель пальцев). Брюшко мышцы также может быть поделено поперек промежуточным сухожилием, тогда возникает двубрюшная мышца. Иногда брюшко поделено не одним, а несколькими сухожилиями или перемычками, как, например, в прямой мышце живота.

Направление волокон в мышце может быть параллельным её длинной оси или находиться под острым углом к ней. В первом случае, чаще встречающемся, длинные волокна позволяют мышце значительно укорачиваться при сокращении, что обеспечивает большой размах движения. Например, пучки волокон в веретенообразных мышцах ориентированы параллельно длинной оси мышцы. Во втором случае волокна, расположенные под углом к оси мышцы, коротки, но более многочисленны, поэтому мышца, сокращаясь, укорачивается незначительно, но развивает большую силу. Если короткие волокна подходят к сухожилию с одной стороны, то мышцу называют одноперистой, если с двух — двуперистой. Бывают мышцы (например, дельтовидная), представляющие собой как бы сращение нескольких одноперистых мышц, благодаря чему направление их волокон становится винтообразным. Такие мышцы встречаются обычно в области шаровидных суставов; их волокна пересекают различные оси сустава и обеспечивают наибольшее разнообразие и силу движений. Волокна некоторых мышц расположены циркулярно: это круговые мышцы, или мышцы-сжиматели — сфинктеры.

По функциям мышцы подразделяются на мышцы-сгибатели и мышцы-разгибатели, отводящие от средней линии и приводящие к ней, вращающие кнаружи (супинаторы) и вращающие вовнутрь (пронаторы), мышцы-синергисты и мышцы-антагонисты. Синергисты — это мышцы, производящие одновременно движение в одном направлении, антагонисты — мышцы, несущие противоположную функцию. Например, в сгибании туловища принимает совместное участие несколько мышц; все они являются синергистами. Другие мышцы разгибают туловище — они антагонисты сгибателей.

Почти все мышцы перебрасываются через один, два или несколько суставов и при своем сокращении производят в них движение. Наиболее распространенные виды движения — сгибание и разгибание, отведение и приведение, вращение. Обычно мышцы, производящие сгибание, находятся спереди, а осуществляющие разгибание — сзади от суставов. Только в коленном и голеностопном суставах передние мышцы, наоборот, производят разгибание, а задние — сгибание. Мышцы, лежащие снаружи от суставов, выполняют функцию отведения, а лежащие кнутри от них — приведения. Вращение осуществляют мышцы, располагающиеся косо или поперечно по отношению к вертикальной оси.

По положению в теле человека выделяют следующие группы мышц: мышцы туловища, мышцы головы, мышцы верхней и мышцы нижней конечностей.

Среди мышц головы особое место занимают мимические и жевательные мышцы. Основной функцией жевательных мышц является обеспечение механического измельчения пищи, тогда как с мимическими связано выражение лица человека. Распределение мышц на эти две группы является несколько условным, поскольку зачастую они действуют вместе (речь, жевание, глотание).

Мышцы туловища подразделяются на мышцы шеи, груди, живота и спины. Первые обеспечивают движения головы, как, например, подкожная мышца шеи. Мышцы груди представлены большим и малым грудными мышцами, межреберных мышцах. К мышцам живота относятся, прежде всего, брюшные мышцы (мышцы пресса), а к мышцам спины трапециевидная и широчайшая мышца спины. К мышцам туловища также относится диафрагма — разделяя грудную и брюшную полости, она принимает непосредственное участие в дыхательных движениях.

Классификация мышечных волокон таблица

Цель урока: представлять строение и функции скелетных мышц,вспомогательного аппарата.

Знать виды мышц,топографию и функции мышц головы и шеи.

Уметь показать на планшетах,муляжах.

План изложения нового материала

1. Наука миология. Мышца как орган

2. Классификация мышц

4. Вспомогательный аппарат мышц

5. Мимические мышцы, особенность

6. Жевательные мышцы

7. Фасции головы

8. Мышцы шеи, группы

9. Фасции области шеи

10. Анатомические образования области шеи

Миология — это наука о развитии, строении и функции скелетных мышц. Знание скелетных мышц для среднего медицинского работника очень важно, например, для правильного проведения массажа, выполнения внутримышечных и внутривенных инъекций, для наложения электродов при диагностических и физиотерапевтических процедурах. Скелетные мышцы построены из поперечнополосатой скелетной мышечной ткани. Они являются произвольными , их сокращение осуществляется сознательно и зависит от нашего желания. Всего в теле человека насчитывается 639 мышц, 317 из них — парные, 5 — непарные. У мужчин масса скелетных мышц составляет примерно 40 % общей массы тела, у женщин — 35 %. У новорожденных масса мускулатуры не превышает 20 %. Физическая нагрузка увеличивает массу мышц. Так, у спортсменов-тяжелоатлетов масса мускулатуры достигает 50 — 60 % массы тела. У пожилых людей с уменьшением нагрузки масса составляют 25 — 30 % общей массы тела.

В основу классификации положены различные признаки: область тела, происхождение и форма мышц, функция, анатомо-топографические взаимоотношения, направление мышечных волокон, отношение мышцы к суставам.

Рис. 14.Схема строения поперечнополосатых мышечных волокон:

1 — поперечнополосатое мышечное волокно;2 —кровеносный капилляр; 3 —миофибриллы; 4 —ядро; 5 —вегетативное нервное волокно; 6 —нервно-мышечный синапс; 7 — двигательное нервное волокно; 8 — эндомизий; 9 —перимизий

Вспомогательный аппарат мышц.

Вспомогательным аппаратом скелетных мышц являются фасции, фиброзные и костно-фиброзные каналы, синовиальные влагалища, синовиальные сумки, мышечные блоки и сесамовидные кости.

1) физиологический поперечник мышцы — сумма площадей поперечного сечения всех поперечнополосатых мышечных волокон.

2) величина площади опоры на костях, хрящах или фасциях;

3) степень нервного возбуждения;

4) кровоснабжение мышц;

5) состояние кожи и подкожной жировой клетчатки.

Работа и функции мышц.

Мышца при сокращении становится короче и толще. При этом она сближает точки начала и прикрепления, происходит перемещение тела и его частей в пространстве. При максимальном сокращении может укорачиваться на 50 % первоначальной длины. Скелетные мышцы при сокращении вызывают движение.

Мышцы, фасции и топография области головы

Мышц головы подразделяются на две большие группы.

1. Мимические мышцы по расположению

2.Жевательные мышцы представлены жевательной, височной,латеральной и медиальной крыловидными мышцами.

Мимические мышцы имеют особенность:

а) начинаясь в большинстве случаев от костных точек, заканчиваются в коже. Они расположены преимущественно вокруг естественных отверстий и играют роль сжимателей или расширителей.

б) В большинстве случаев они не имеют фасций

Мышцы крыши черепа. Надчерепная мышца затылочно-лобной мышцей, в центре обширным сухожильным шлемом, рыхло соединенной с надкостницей и очень прочно — с кожей, что объясняет скальпированный характер ран в области крыши черепа. Функция: перемещает кожу головы, особенно в области лба; поднимает брови.(удивление)

Мышцы наружного уха. Передняя , верхняя и задняя ушные мышцы , у человека развиты слабо.

Мышцы окружности глаза. Круговая мышца глаза , лежит под кожей вокруг входа в глазницу. и состоит их трех частей: глазничной, вековой и слезной:

Мышца , сближающая брови начинается от носовой части лобной кости вплетается в кожу бровей(м. (гнева)

Мышцы носа. Носовая мышца , начало от верхней челюсти в области верхнего клыка и охватывает ноздри, заканчиваясь в коже носа. Функция: суживает отверстие носа; опускает крыло носа.

Мышцы окружности рта. Эти мышцы у человека в связи с функцией речи высоко дифференцированы и образуют многочисленную группу.

1. Мышца , поднимающая верхнюю губу начинается от лобного отростка верхней челюсти, заканчивается в коже носогубной складки. Функция: поднимает верхнюю губу.

2.Мышца , поднимающая угол рта, . Начинается от верхней челюсти ниже подглазничного отверстия. прикрепляется к коже и слизистой оболочке верхней губы. Функция: тянет угол рта вверх.

3.Большая и малая скуловые мышцы , начинаются от скуловой кости, вплетаются в кожу угла рта.. Функция: тянут угол рта вверх и латерально.

4.Мышца смеха , начинается от околоушной фасции, прикрепляется к коже угла рта. Функция: тянет угол рта в латеральную сторону.

5.Мышца , опускающая угол рта , начинается от нижнего края нижней челюсти и заканчивается в коже угла рта, частично переходит в верхнюю губу. Функция: тянет угол рта вниз.

6.Мышца , опускающая нижнюю губу , начинается от нижней челюсти в области подбородочного отверстия, заканчивается в коже нижней губы и ее слизистой оболочке. Функция: опускает нижнюю губу.

7.Подбородочная мышца , начинается от нижней челюсти над подбородочным выступом и прикрепляется к коже подбородка. Функция: поднимает кожу подбородка, образуя на ней ямочки.

8.Щечная мышца , лежит в толще щеки , прилежит к слизистой оболочке щеки. Начинается от альвеолярных отростков верхней и нижней челюстей, продолжается в верхнюю и нижнюю губы. Функция: тянет угол рта назад, прижимает щеки и губы к зубам и альвеолярным отросткам челюстей.

9.Круговая мышца рта , лежит в толще верхней и нижней губ, функция: закрывает ротовую щель.

Эти мышцы обеспечивают движения нижней челюсти, их четыре.

Жевательная мышца , начинается от нижнего края скуловой дуги; прикрепляется к наружной жевательной бугристости нижней челюсти. Функция: поднимает нижнюю челюсть.
Височная мышца , , начинается от чешуи височной кости и прикрепляется к венечному отростку нижней челюсти. Функция: передними пучками поднимает нижнюю челюсть, задними — тянет нижнюю челюсть назад.
Латеральная крыловидная мышца , начинается от поверхности большого крыла и латеральной пластинки крыловидного отростка клиновидной кости; прикрепляется к мыщелковому отростку нижней челюсти. Функция: сокращаясь с одной стороны, смещает челюсть в противоположную; действуя одновременно с такой же мышцей другой стороны, выдвигает челюсть вперед.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector