Arbachakov.ru

Спортивный обозреватель
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Моносахариды структурные формулы

Моносахариды структурные формулы

§ 2. МОНОСАХАРИДЫ

Пространственная изомерия

По своей химической природе моносахариды являются альдегидо- или кетоспиртами. Простейший представитель моносахаридов, альдотриоза, – глицериновый альдегид (2,3-дигидроксипропаналь).

Рассматривая строение глицеринового альдегида, можно заметить, что приведенной формуле отвечают два изомера, отличающихся пространственной структурой и представляющих собой зеркальное отражение друг друга:

Изомеры, имеющие одинаковые молекулярные формулы, но отличающиеся расположением атомов в пространстве, называются пространственными, или стереоизомерами. Два стереоизомера, относящихся друг к другу как предмет и несовпадающее с ним зеркальное отражение, называются энантиомерами. Такой вид пространственной изомерии еще называют оптической изомерией.

Существование энантиомеров у глицеринового альдегида обязано наличию в его молекуле хирального атома углерода, т.е. атома, связанного с четырьмя различными заместителями. Если в молекуле присутствует более чем один хиральный центр, то количество оптических изомеров будет определяться по формуле 2 n , где n – число хиральных центров. При этом стереоизомеры, не являющиеся энантиомерами, называются диастереомерами.

Для изображения оптических изомеров на плоскости используют проекции Фишера. При построении проекций Фишера следует учитывать, что атомы или группы атомов, лежащие на горизонтальной линии, должны быть направлены к наблюдателю, т.е. выходить из плоскости бумаги. Атомы или группы атомов, лежащие на вертикальной линии и составляющие, как правило, главную цепь, направлены от наблюдателя, т.е. уходят за плоскость бумаги. Для рассматриваемых нами изомеров глицеринового альдегида построение проекций Фишера будет происходить следующим образом:

Глицериновый альдегид принят в качестве стандарта для обозначения оптических изомеров. Для этого один из его изомеров обозначили буквой D, а второй – буквой L.

Пентозы и гексозы

Как уже упоминалось выше, наиболее часто в природе встречаются альдопентозы и альдогексозы. Рассматривая их строение, можно прийти к выводу, что альдопентозы имеют 3 хиральных центра (обозначены звездочками) и, следовательно, состоят их 8 (2 3 ) оптических изомеров. Альдогексозы насчитывают 4 хиральных центра и 16 изомеров:

Сравнивая структуру последнего от карбонильной группы хирального центра углевода со структурой D- и L-глицеринового альдегидов, все моносахариды делят на две группы: D- и L-ряды. Важнейшими представителями альдопентоз являются D-рибоза, D-дезоксирибоза, D-ксилоза, L-арабиноза, альдогексоз – D-глюкоза и D-галактоза, а кетогексоз – D-фруктоза. Проекции Фишера названных моносахаридов и их природные источники приведены ниже.

Моносахариды структурные формулы

Моносахариды (монозы) – гетерофункциональные соединения, в состав их молекул входит одна карбонильная группа (альдегидная или кетонная) и несколько гидроксильных групп.

Т.е. моносахариды являются альдегидоспиртами или кетоспиртами. Следовательно, углеводы являются полигидроксикарбонильными соединениями (полигидроксиальдегиды или полигидроксикетоны).

Моносахариды с альдегидной группой называются альдозами, с кетогруппой – кетозами:

Учебный фильм «Углеводы. Моносахариды»

По числу углерордных атомов в молекуле моносахариды делятся на тетрозы, пентозы, гексозы.

Альдозы и кетозы с одинаковым числом атомов углерода изомерны между собой.

В природе наиболее распространены моносахариды, в молекулах которых содержится пять углеродных атомов (пентозы) или шесть (гексозы).

Например:

возможно и такое обозначение глюкозы и фруктозы:

Из этих формул видно, что моносахариды – это полигидроксиальдегиды (альдозы, альдегидоспирты) или полигидроксикетоны (кетозы, кетоноспирты).

Рибоза и глюкоза – альдозы (альдопентоза и альдогексоза), фруктоза – кетоза (кетогексоза).

Самые распространенные моносахариды – глюкоза и фруктоза, имеющие общую формулу (СН2О)6.

Модели молекул

Нумерация цепи начинается с атома углерода альдегидной группы (в случае альдоз) или с крайнего атома углерода, к которому ближе располагается кетогруппа (в случае кетоз):

Моносахариды обладают восстанавливающими свойствами из-за наличия гидроксильных групп: реакция «серебряного зеркала» (осаждение серебра из раствора соли) и реакция Фелинга (осаждение меди из растовра медного купороса).

Структура важнейших моносахаридов

Классификация моносахаридов

Физические свойства

Моносахариды представляют собой бесцветные кристаллические вещества, сладкие на вкус, хорошо растворимые в воде, нерастворимые в эфире, имеющие невысокие температуры плавления. Сладость моносахаридов различна. Например, фруктоза слаще глюкозы в три раза.

Структура моносахаридов

Элементарным звеном всех высших углеводов, так же как и низкомолекулярных производных этого класса, являются моносахариды. В типичных случаях их молекулы содержат прямую насыщенную цепь из пяти или шести углеродных атомов, каждый из которых несет гидроксильный заместитель, а один окислен до альдегидное или кетонной группы. Таковы, например, альдопентозы 1 (т.е. С 5 -сахара с альдегидной группой), альдогексозы 2 (т.е. С 6 -сахара с альдегидной группой), кетогексозы (C 6 -сахара с кетогруппой) и др. Кроме наиболее распространенных пентоз и гексоз, существуют еще C 3 -, C 4 -, C 7 -, C 8 — и даже C 9 -моносахариды, называемые соответственно триозами, тетрозами, пентозами, октозами и нонозами.

Концевое CH 2 OH-звено цепи (кстати, нумеруют углеродные атомы в моносахаридах всегда начиная с карбонильной группы или с ближайшего к ней конца цепи) может быть окислено до карбонила. При этом возникает другой распространенный подкласс моносахаридов – уроновые кислоты, например альдопентуроновые кислоты 4 или альдогексуроновые кислоты 5. В других случаях наоборот, у углеродного атома отсутствует гидроксил. Возникает так называемое дезоксизвено и соответственно дезоксисахара, например, 2-дезокси-альдопентозы (в частности, 2-дезокси-D-рибоза, комнонент ДНК) или 6-дезокси-альдогексозы 7. Одна из гидроксильных групп (а иногда и две или даже три) может быть заменена аминогруппой. Это аминосахара, как, например, 2-амино-2-дезокси-альдогексозы 8, часто, но нестрого называемые гексозаминами. Бывают, наконец, и моносахариды с разветвлением углеродного скелета а также с несколькими видами отклонений от классических структур типа 1-3 одновременно.

Читать еще:  Формула дефицита калорий

Не следует думать, что названные типы соединений – некие искусственные «монстры». Наоборот, все это типичные и достаточно распространенные структурные элементы более сложных природных углеводов (другое дело, что все они могут быть получены и синтетически). Более того, существуют в природе и нередко играют весьма важную роль в жизнедеятельности клетки и более сложные моносахариды, еще более отдаляющиеся по структуре и составу от классических «угле-водов». Здесь мы хотели указать на наиболее распространенные типы структурных вариаций, встречающихся в этом классе.

В каждой из рассмотренных структур имеется по нескольку ассиметричных центров и, следовательно, для каждой возможно существование 2 n стереоизомеров, где n – число ассиметрических центров. В альдогексозах (2), например, их 4. В классификационных целях из них выделяют один: тот, который максимально удален от карбонильной группы (для гексоз это С-5), и по его конфигурации (D или L) относят моносахарид соответственно к D- или L-ряду.

А как описать конфигурацию остальных центров? Для этого применяют серию тривиальных названий для всех возможных комбинаций относительных конфигураций. Так возникают такие названия, как D-глюкоза (9), D-галактоза (10), D-арабиноза (11), L-арабиноза (12), D-рибоза (13) и др.

Структуры 9-13 написаны в проекции Фишера. Напомним, что по правилам фишеровской проекции, тетраэдрический углеродный атом располагают так, чтобы его четыре связи проектировались на плоскость в виде креста, причем связи, смотрящие на наблюдателя (над плоскостью бумаги), образуют горизонтальную линию, а уходящие под плоскость бумаги (от наблюдателя) – вертикальную, как это показано на примере формул 14 и 15. Чаще всего символ центрального атома опускают, заменяя его точкой пересечения прямых (формула 16). Это показано на схеме, составленной в проекции Фишера

где 1-4 – заместители при центральном углеродном атоме, атом углерода в плоскости бумаги, заместители 1 и 3 – над плоскостью, заместители 2 и 4 – под плоскостью.

Итак, главные источники структурного и функционального многообразия моносахаридов лежат в различном наборе функциональных групп (карбонильные, гидроксильные, карбоксильные, аминогруппы и т.д.) и в не меньшей степени в различиях стереохимии. Последнее надо особо подчеркнуть. В обычном курсе органической химии рассматривают свойства и различия отдельных классов соединений, основанные в первую очередь на различиях бутлеровских структур, и отдельно в виде некоего экзотического приложения – вопросы стереохимии. В химии сахаров такого разделения не может быть. В принципе вся эта область есть органическая стереохимия par excellence *, и все многообразие свойств углеводов проистекает прежде всего из их стереохимических различий. Так, например, кардинальные различия свойств и биологической функции целлюлозы и одного из двух компонентов крахмала – амилозы – обусловлены различием конфигурации лишь одного ассиметричного центра элементарного звена этих стереоизомерных полисахаридов.

Целый ряд классических деструктивных методов установления строения органических веществ привел исследователей прошлого века к структурам типа 1-13 для моносахаридов.И в смысле справедливости строения углеродного скелета и положения заместителей эти структуры отражают непреложную, добытую экспериментом истину. Тем не менее они не соответствуют действительному строению моносахаридов, хотя и удобны в дидактическом плане: для описания и запоминания относительных конфигураций ассиметрических центров (чем мы в дальнейшем еще воспользуемся).

Чтобы продвинуться дальше (ближе к реальности) нам нужно вспомнить некоторые свойства карбонильных соединений. Альдегиды и кетоны (по крайней мере обычные) в присутствии кислот легко реагируют со спиртами, образуя ацетали и кетали. Как и многие другие реакции конденсации, образование ацеталей и кеталей резко ускоряется в том случае, когда реагирующие группы пространственно сближены, например расположены на подходящем расстоянии внутри одной молекулы *. Моносахарижы представлены полиоксиальдегидами или полиоксикетонами, в которых карбонильная группа может на выбор вступать в конденсацию с любым гидроксилом той же молекулы. Естественно, что такая реакция осуществляется с наиболее «удобно» расположенным гидроксилом. Вследствие ряда причин, на которых мы сейчас не будем останавливаться, оптимальное расположение карбонильной и спиртовой групп отвечает замыканию пяти- и шестичленных циклов.

Действительно, одна из спиртовых гидроксильных групп моносахарида, например D-глюкозы (9), самопроизвольно вступает в конденсацию с альдегидной группой той же молекулы с образованием ацетальной связи. При этом возникает циклическое производное, но не ацеталь, а полуацеталь, т.е. такое, в котором один из заместителей при бывшем карбонильном атоме углерода – спиртовый остаток, а другой – гидроксильная группа. Так образуются пятичленные, так называемые фуранозные циклы (17), если в реакции участвует гидроксил при С-4 или шестичленные – пиранозные циклы (18), если в реакцию вступает гидроксил при С-5.

Подведем предварительные итоги. Моносахариды – это полиоксиальдегиды или полиоксикетоны с прямой (в типичных случаях) насыщенной углеродной цепью. Часть гидроксильных групп может отсутствовать или быть заменена на другие функциональные группы. Обычное состояние моносахаридов (и, как мы увидим в дальнейшем, всех их важнейших природных и синтетических производных) циклическое, включающее образование пяти- и шестичленного гетероцикла с одним атомом кислорода в цикле.

Теперь возникает технический, но немаловажный вопрос: Как их изобразить на бумаге?

Моносахариды

Моносахариды – это самые простые углеводы, состоящие из одного звена. Обычно это твердые сладкие вещества, хорошо растворимые в воде, хуже – в спиртах и практически не вступающие в реакцию с эфиром.

Читать еще:  Калькулятор максимального веса

Общая характеристика

Название «моносахариды» с греческого переводится как «одиночный сахар». Эти простые углеводы состоят из одного элемента и не могут быть разбиты на более мелкие блоки. Моносахариды являют собой самую простую форму углеводов, но они могут объединяться, образовывая более сложные соединения. Например, 2 моносахарида создают дисахариды, соединение от 3 до 10 элементов – это уже олигосахариды, а 11 больше моносахаридов, связанных воедино, образуют полисахариды.

Исследователям впервые удалось получить глюкозу в 1811 году: русский ученый Константин Сигизмунд гидролизовал это вещество из крахмала, а через 33 года другой русский ученый К. Шмидт придумал углеводам их название.

В пище моносахариды представлены 3 веществами: глюкозой, фруктозой, галактозой.

В природе простейшие углеводы обычно представлены в форме глюкозы.

Все они обладают общей формулой – С6Н12О6. И поскольку каждый из них имеет в составе 6 атомов углерода, принадлежат к гексозной группе. Меж тем, несмотря на общую молекулярную формулу, расположение атомов в каждом из этих веществ отличается. Это позволяет называть их структурными изомерами.

Классификация простых углеводов

В современной науке применяют разные классификации для определения типов моносахаридов.

Но для начала важно сказать, что существует две формы этих веществ:

Моносахариды открытой формы – это вещества, молекула которых состоит из карбонильной и нескольких гидроксильных групп. Это значит, что они могут быть альдегидоспиртами и кетоноспиртами. Отсюда и названия групп – альдозы и кетозы.

Моносахариды циклической формы могут создавать так называемые циклы, замыкаясь в кольца. Этот вид вещества более устойчив, поэтому и в природе они представлены в большем количестве.

Кроме того, моносахариды различают по длине углеродной цепи (количеству атомов углерода). Отсюда и систематизация веществ на триозы, тетрозы, пентозы, гексозы и так далее.

Изомеры моносахаридов

В составе практически всех моносахаридов есть асимметричные атомы углерода. Благодаря этому существуют два оптических стереоизомера – D и L. При этом глицериновый альдегид принято считать исходным веществом для всех моносахаридов. Все последующие трансформирования происходят в результате удлинения его цепей. D и L формы моносахаридов являются зеркальными отражениями друг друга. В природе чаще встречаются «представители» D-формы, а синтетические вещества преимущественно представлены в виде L-варианта. При этом важно сказать, что обе формы обладают разными свойствами.

Биохимические свойства

От функциональных групп моносахаридов зависят и их свойства. Соответственно, они могут вступать в реакции окисления и восстановления.

В результате окисления моносахаридов создаются разные классы кислот. Альдоновые кислоты – последствие окисления альдегидной группы С1 –атома до карбоксильной группы. Альдаровые кислоты возникают после окисления альдегидной группы или первичной спиртовой С6– атома углерода. Альдуроновая кислота создается вследствие окисления первичной спиртовой группы С6-углерода.

Восстановление моносахаридов под воздействием ферментов или других веществ сопровождается образованием полиспиртов, например, сорбитола или рибитола. Последний, кстати, является компонентом витамина В2.

Функции простых сахаров

Моносахариды в первую очередь являются источниками энергии. Большинство из них, как и другие углеводы, в 1 грамме вещества содержат примерно 4 килокалории.

Мозгу же для адекватного функционирования требуется не меньше 160 г этого сладкого вещества.

Моносахариды не принадлежат к числу незаменимых для организма питательных веществ, однако каждый из представителей «вида» важен для человека своими уникальными функциями. Глюкоза, к примеру, это основное топливо для клеток организма. Фруктоза участвует в метаболических процессах. А галактозу обнаружили в эритроцитах у лиц с третьей группой крови. Моносахарид рибоза является частью дезоксирибонуклеиновой кислоты в хромосомах.

Моносахариды и сахар в крови

Моносахариды, как и большинство других питательных веществ, всасываются организмом на уровне тонкой кишки. Они могут быть поглощены без предварительной ферментации и расщепления. Более того, все остальные, более сложные углеводы организм «проглатывает» в форме моновеществ. Глюкозу и галактозу человек усваивает легче и быстрее, чем другие углеводы, а для поглощения фруктозы организму требуется больше времени и сил, при этом она всасывается не полностью. После потребления глюкоза и галактоза быстро попадают в кровь и резко повышают уровень сахара, поскольку обладают высоким гликемическим индексом. В это же время фруктоза, благодаря низкому гликемическому показателю, повышает сахар в крови медленнее и мягче.

В роли питательных веществ

Моносахариды в качестве питательных веществ используются в натуральной и полуискусственной формах.

Но все они играют роль основной «подкормки» для мозга, клетки которого без достаточного количества сахаров не смогли бы правильно работать.

В природе натуральные моносахариды – это:

  • глюкоза (декстроза);
  • фруктоза;
  • галактоза;
  • манноза;
  • рибоза;
  • дезоксирибоза.

Все они являются гексозами, то есть состоят из 6 атомов углерода.

Полуискусственные моносахара

Гексозы (содержат 6 атомов углерода):

  • D и L-аллоза;
  • D и L-альтроза;
  • D и L-фукоза;
  • D и L-гудоза;
  • D-сорбоза;
  • D-тагатоза.

Пентозы (содержат 5 атомов углерода):

  • D и L-арабиноза;
  • D и L-ликсоза;
  • рамноза;
  • D-рибоза;
  • рибулоза и ее синтетическая форма;
  • D-ксилоза (древесный сахар).

Тетрозы (содержат 4 атома углерода):

Примеры продуктов, содержащих моносахариды:

  • фрукты и фруктовые соки (глюкоза, фруктоза);
  • мед (глюкоза, фруктоза);
  • сиропы (глюкоза, фруктоза);
  • десертные вина (глюкоза, фруктоза);
  • напитки (безалкогольные, энергетики, ликеры), шоколад, молочные десерты (в основном глюкоза).
Читать еще:  Формула веса от роста и возраста

Характеристика пищевых моносахаров

Глюкоза

Название этого моносахарида с древнегреческого обозначает «сладкий», а в химии глюкоза известна также под названием «виноградный сахар». Содержится в виноградном соке, фруктах, а также есть в крови. Это вещество с формулой С6Н12О6 представляет собой сладкие белые кристаллы, которые довольно легко растворяются в воде.

Этот вид моносахара считается наиболее важным в природе. Глюкоза – составляющий элемент дисахаридов и полисахаридов. В природных условиях образуется в результате фотосинтеза. Также производится из полисахаридов, таких как целлюлоза и крахмал, в результате гидролиза и ферментирования. В процессе ферментирования глюкозы образовываются диоксид углерода и этиловый спирт. И эта способность характерна для всех углеводов, так как в результате позволяет крови транспортировать сахара ко всем клеткам организма. В человеческом организме играет роль поставщика энергии. Является важнейшим веществом для работы мышц.

Фруктоза

Свое второе название – «плодовый, или фруктовый сахар» – фруктоза получила из-за того, что содержится преимущественно в ягодах и фруктах. А вот химики называют это вещество левулозой. Является компонентом сахарозы и лактулозы. И хоть во многих плодах фруктоза содержится в паре с глюкозой, но плодовый сахар является более сладким веществом. Также он входит в состав меда. И что интересно, это единственный вид сахаров, содержащийся в сперме человека и быка.

Главное отличие фруктозы от глюкозы – в неустойчивости к щелочным и кислым растворам. Активно применяется для производства мороженого, как вещество, предотвращающее песчанистость. Употребляемая в больших количествах, вызывает расстройство пищеварения. А также увеличивает концентрацию липидов в крови, что, как полагают, является фактором риска развития кардиологических болезней.

Галактоза

Как правило, она, не встречается в природе, но гидролизуется из лактозы, которая содержится в молоке. Хотя галактоза не так активно растворяется в воде и является менее сладким веществом, чем глюкоза, она имеет ряд других преимуществ. В частности, образует гликолипиды и гликопротеины, которые содержатся во многих тканях.

Моносахарид галактоза представлен сразу в двух формах: циклической и ациклической. Содержится в тканях растений, а также является элементом некоторых полисахаридов, в том числе и бактериальных. Посему нередко становится участником процессов брожения и трансформации в так называемые лактозные дрожжи. В человеческом организме представлена в составе лактозы (молочный сахар) и некоторых других веществ. В результате химических реакций легко трансформируется в глюкозу, что помогает более легкому усваиванию углерода. Также при определенных обстоятельствах способна переходить в галактуроновую или аскорбиновую кислоту. В женском организме галактоза может воспроизводиться из глюкозы, чтобы дальше трансформироваться в лактозу, содержащуюся в молочных железах.

Наличие галактозы обнаружено в молоке, помидорах и многих других овощах и фруктах. В пищевой промышленности галактоза активно используется в качестве активного ингредиента энергетических напитков.

Галактоза обладает разными уникальными свойствами. В частности, она способствует более быстрой потери и затем удержанию веса, служит профилактическим средством против диабета у взрослых. Также является стабильным источником энергии для спортсменов и работающих физически.

Учитывая уникальные возможности галактозы, исследователи все чаще называют ее «сахаром новой эпохи», хотя и признаются, что многое о свойствах этого вещества пока не знают.

Потребность в моносахаридах

Обычно более всего в достаточном потреблении моносахаридов нуждаются люди работающие тяжело физически или умственно, а также спортсмены. Дети, в период интенсивного роста, люди с психическими нарушениями, депрессиями, болезнями пищеварительного тракта, слишком малым весом и во время интоксикации также нуждаются в «сладеньком».

А вот кому стоит более тщательно считать калории и потребление углеводов в сутки, так это лицам с ожирением разных стадий, гипертоникам, пожилым, а также ведущим малоподвижную жизнь.

Кроме того, моносахариды необходимы людям с дефицитом кальция и витамина С, так как эти углеводы помогают усвоению названных полезных веществ.

Понять, что организм испытывает нехватку моносахаридов можно по сниженному сахару в крови, резкому похудению, депрессивных состояниях, а также непокидающему чувству голода. Наоборот, сигналом к уменьшению сладких порций служат дистрофия печени, признаки гипертонии и кислотно-щелочной дисбаланс. Также не стоит злоупотреблять сахарами людям с непереносимостью молочного.

Моносахариды – важная часть нашего ежедневного питания. Они необходимы человеку для пополнения жизненных сил, хорошего настроения и правильной работы мозга. Так позаботьтесь о том, чтобы эти вещества присутствовали в вашем рационе.

  1. Ю. С. Шабаров, Т. С. Орецкая, П. В. Сергиев. – Моно- и дисахариды (учебное пособие для студентов III курса), Часть I, 5-е издание, Москва, МГУ им. М. В. Ломоносова, 2010 г. – 82 с.
  2. Ю. С. Шабаров, Т. С. Орецкая. – Моно- и дисахариды (учебное пособие для студентов III курса), Часть II, 5-е издание, Москва, МГУ им. М. В. Ломоносова, 2010 г. – 86 с.

Больше свежей и актуальной информации о здоровье на нашем канале в Telegram. Подписывайтесь: https://t.me/foodandhealthru

Специальность: инфекционист, гастроэнтеролог, пульмонолог .

Общий стаж: 35 лет .

Образование: 1975-1982, 1ММИ, сан-гиг, высшая квалификация, врач-инфекционист .

Научная степень: врач высшей категории, кандидат медицинских наук.

Повышение квалификации:

  1. Инфекционные болезни.
  2. Паразитарные заболевания.
  3. Неотложные состояния.
  4. ВИЧ.
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector